Svaki dan se objavljuju deset tisuća pjesama. Ovaj stalni niz opcija strujanje uslugama i radijskim postajama otežava odabir pjesama kojima će se privlačiti slušatelji, kao njima i reklamama. Kako bi pronašli pjesme koje će imati odjeljak kod širokog auditorija, mediji su koristile usluge ljudskih slušatelja i umjetne inteligencije. Ovaj pristup, međutim, dosad nije prešao stopu točnosti od 50% i njime se ne može pouzdano predvidjeti hoće li pjesme postati hitovi.
Sveobuhvatna tehnika
Istraživanje objavljeno u časopisu Granice u umjetnoj inteligenciji pokazalo je sljedeće: ako se strojno učenje primijeni na neuronske podatke prikupljene dok ljudi slušaju novu glazbu, hit pjesme mogu se predvidjeti s gotovo savršenom točnošću. I doista, istraživači sveučilišta Claremont Graduate University (CGU) koristili su sveobuhvatnu tehniku strojnog učenja primijenjenu na reakcije mozga i zahvaljujući tome uspjeli predvidjeti hit pjesme s čak 97% točnosti!
“Primjenom strojnog učenja na neurofiziološke podatke, mogli bismo gotovo savršeno identificirati hit pjesme”, kaže profesor Paul Zak. “Nevjerojatno je da neuronska aktivnost 33 osobe može predvidjeti hoće li milijun drugih slušati nove pjesme. Nikad prije nije pokazano ništa približno ovoj točnosti.”
Strojno učenje s neurološkim podacima
Da bi pogodili uspjeh neke pjesme, istraživači su se poslužili “neuropredviđanjem” (neuropredviđanje) koje hvata neuralnu aktivnost muške skupine ljudi kako bi predvidjelo učinke na razinu populacije, bez potrebe za mjerenjem moždane aktivnosti stotina ljudi.
Sudionici studije, opremljeni standardnim senzorima, slušali su 24 pjesme dok su istraživači mjerili njihove neurofiziološke reakcije na ono što čuju. Prikupljeni moždani signali odražavaju aktivnost moždane mreže povezane s raspoloženjem i razinom energije. To je istraživačima omogućilo da se predvidi tržišni uspjeh pojedine pjesme, uključujući broj streamova, a sve to na temelju podataka samo nekoliko slušatelja.
Procjena predviđanja
Nakon prikupljanja podataka, istraživači su koristili različite statističke pristupe za procjenu prediktivne točnosti neurofizioloških varijabli. To je omogućilo izravnu usporedbu modela. Kako bi poboljšali točnost predviđanja, uvježbali su model strojnog učenja koji je testirao različite algoritme.
Linearni statistički model je hitove identificirao sa stopom uspješnosti 69%. Primjenom strojnog učenja na prikupljene podatke stopa točno identificiranih hit pjesama skočila je na nevjerojatnih 97%. Pritom je primjena strojnog učenja na neuralne reakcije u prvoj minuti slušanja omogućila veću nego solidnu stopu uspješnosti od 82%.
Istraživači vjeruju da bi se njihov pristup zbog njegove jednostavne implementacije mogao koristiti i izvan svijeta glazbe, za pogađanje uspjeha filmova, serija i televizijskih emisija. Ključ je, kažu, u metodologiji.
Više o temiIzvor:Bug.hr